Transforming a causal system from a given initial state to a desired target state is an important task permeating multiple fields including control theory, biology, and materials science. In causal models, such transformations can be achieved by performing a set of interventions. In this paper, we consider the problem of identifying a shift intervention that matches the desired mean of a system through active learning. We define the Markov equivalence class that is identifiable from shift interventions and propose two active learning strategies that are guaranteed to exactly match a desired mean. We then derive a worst-case lower bound for the number of interventions required and show that these strategies are optimal for certain classes of graphs. In particular, we show that our strategies may require exponentially fewer interventions than the previously considered approaches, which optimize for structure learning in the underlying causal graph. In line with our theoretical results, we also demonstrate experimentally that our proposed active learning strategies require fewer interventions compared to several baselines.


翻译:将因果系统从特定初始状态转变为理想目标状态是一项重要任务,渗透多个领域,包括控制理论、生物学和材料科学。在因果模型中,这种转变可以通过一系列干预措施实现。在本文件中,我们考虑了通过积极学习确定与系统理想值相匹配的转变干预措施的问题。我们定义了从轮班干预措施中可识别的Markov等值类,并提出了两种积极学习战略,保证与理想值完全吻合。然后,我们得出了最坏的情况,降低了所需干预措施的界限,并表明这些战略对于某些类型的图表来说是最佳的。特别是,我们表明我们的战略可能需要比以前考虑的方法少得多的干预措施,而以前考虑的方法最优化的是基本因果图的结构学习。根据我们的理论结果,我们还实验性地表明,我们拟议的积极学习战略需要的干预措施比几个基线要少。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
专知会员服务
39+阅读 · 2020年9月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
3+阅读 · 2017年10月27日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
12+阅读 · 2021年6月29日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
4+阅读 · 2020年3月19日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
专知会员服务
39+阅读 · 2020年9月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
已删除
将门创投
3+阅读 · 2017年10月27日
相关论文
Arxiv
0+阅读 · 2021年12月16日
Arxiv
12+阅读 · 2021年6月29日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
4+阅读 · 2020年3月19日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Top
微信扫码咨询专知VIP会员