In this simple article, with possible applications in theoretical and applied physics, we suggest an original way to derive the expression of Shannon's entropy from a purely variational approach,using constraints. Based on the work of Edwin T. Jaynes, our results are not fundamentally new but the context in which they are derived might, however, lead to a remarkably consistent formalism,where the maximum entropy principle appears naturally. After having given a general definition of "ignorance" in this framework, we derive the somehow general expected expression for the entropy using two approaches. In the first, one is biased and has a vague idea of the shape of the entropy function. In the second, we consider the general case, where nothing is a priori known. The merits of both ways of thinking are compared.
翻译:简而言之,在理论和应用物理学中可能应用的这一条中,我们建议一种原始方法,从纯粹的变式方法中得出香农昆虫的表达方式,使用制约,根据Edwin T. Jaynes的工作,我们的结果不是全新的,而是它们产生的背景,但可能会导致一种明显一致的形式主义,在这种形式主义中,最大的诱变原则自然地显现出来。在这个框架中,在给出了对“失光性”的一般性定义之后,我们用两种方法得出了对诱变的广义的预期表达方式。在第一个方法中,一种是偏向性的,对诱变功能的形状有模糊的见解。在第二个方法中,我们考虑一般情况,没有先知的事物。两种思维方式的优点是比较的。