This paper presents ViDeBERTa, a new pre-trained monolingual language model for Vietnamese, with three versions - ViDeBERTa_xsmall, ViDeBERTa_base, and ViDeBERTa_large, which are pre-trained on a large-scale corpus of high-quality and diverse Vietnamese texts using DeBERTa architecture. Although many successful pre-trained language models based on Transformer have been widely proposed for the English language, there are still few pre-trained models for Vietnamese, a low-resource language, that perform good results on downstream tasks, especially Question answering. We fine-tune and evaluate our model on three important natural language downstream tasks, Part-of-speech tagging, Named-entity recognition, and Question answering. The empirical results demonstrate that ViDeBERTa with far fewer parameters surpasses the previous state-of-the-art models on multiple Vietnamese-specific natural language understanding tasks. Notably, ViDeBERTa_base with 86M parameters, which is only about 23% of PhoBERT_large with 370M parameters, still performs the same or better results than the previous state-of-the-art model. Our ViDeBERTa models are available at: https://github.com/HySonLab/ViDeBERTa.


翻译:本文展示了ViDeBERTA,这是越南语的一个新的经过预先训练的单一语言模式,有三种版本,即ViDeBERTA_xsmill、ViDeBERTA_base和ViDeBERTA_pration,这些版本在使用DeBERTA结构的大规模高质量和多样化越南文本中经过预先培训。虽然许多以变异器为基础的成功经过训练的语言模式已被广泛推荐用于英语,但对于越南语来说,仍然很少有经过预先培训的越南语模式,这种语言是一种低资源语言,在下游任务上取得了良好的效果,特别是回答问题。我们微调了我们关于三种重要自然语言下游任务的模式,即部分语音标记、命名实体识别和问题回答。经验结果显示,ViDeBERTA,其参数远远少于以前越南特定自然语言理解任务方面的先进模式。值得注意的是,ViDeBERTA_base,它只有约23%的PhoBERT_ma参数,比370M参数还要高,仍然在前一个州-VABAR_VAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员