In domains where users tend to develop long-term preferences that do not change too frequently, the stability of recommendations is an important factor of the perceived quality of a recommender system. In such cases, unstable recommendations may lead to poor personalization experience and distrust, driving users away from a recommendation service. We propose an incremental learning scheme that mitigates such problems through the dynamic modeling approach. It incorporates a generalized matrix form of a partial differential equation integrator that yields a dynamic low-rank approximation of time-dependent matrices representing user preferences. The scheme allows extending the famous PureSVD approach to time-aware settings and significantly improves its stability without sacrificing the accuracy in standard top-$n$ recommendations tasks.
翻译:在用户倾向于发展不会经常改变的长期偏好的领域,建议的稳定性是建议者系统被认为质量的一个重要因素,在这种情况下,不稳定的建议可能导致个人化经历差和不信任,使用户远离建议服务。我们提出一个渐进式学习计划,通过动态建模方法减轻这类问题。它包含一个通用的矩阵形式,即部分差别方程综合体,产生一种动态的低级别基质,反映用户偏好的时间依赖基质。该计划允许将著名的普雷SVD方法推广到具有时间意识的环境,在不牺牲标准最高至10亿美元建议任务的准确性的情况下,大大提高其稳定性。