Empirical Bayes (EB) is a popular framework for large-scale inference that aims to find data-driven estimators to compete with the Bayesian oracle that knows the true prior. Two principled approaches to EB estimation have emerged over the years: $f$-modeling, which constructs an approximate Bayes rule by estimating the marginal distribution of the data, and $g$-modeling, which estimates the prior from data and then applies the learned Bayes rule. For the Poisson model, the prototypical examples are the celebrated Robbins estimator and the nonparametric MLE (NPMLE), respectively. It has long been recognized in practice that the Robbins estimator, while being conceptually appealing and computationally simple, lacks robustness and can be easily derailed by ``outliers'', unlike the NPMLE which provides more stable and interpretable fit thanks to its Bayes form. On the other hand, not only do the existing theories shed little light on this phenomenon, but they all point to the opposite, as both methods have recently been shown optimal in terms of regret (excess over the Bayes risk) for compactly supported and subexponential priors. In this paper we provide a theoretical justification for the superiority of $g$-modeling over $f$-modeling for heavy-tailed data by considering priors with bounded $p>1$th moment. We show that with mild regularization, any $g$-modeling method that is Hellinger rate-optimal in density estimation achieves an optimal total regret $\tilde \Theta(n^{\frac{3}{2p+1}})$; in particular, the special case of NPMLE succeeds without regularization. In contrast, there exists an $f$-modeling estimator whose density estimation rate is optimal but whose EB regret is suboptimal by a polynomial factor. These results show that the proper Bayes form provides a ``general recipe of success'' for optimal EB estimation that applies to all $g$-modeling (but not $f$-modeling) methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
23+阅读 · 3月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
23+阅读 · 3月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员