Monte Carlo estimation in plays a crucial role in stochastic reaction networks. However, reducing the statistical uncertainty of the corresponding estimators requires sampling a large number of trajectories. We propose control variates based on the statistical moments of the process to reduce the estimators' variances. We develop an algorithm that selects an efficient subset of infinitely many control variates. To this end, the algorithm uses resampling and a redundancy-aware greedy selection. We demonstrate the efficiency of our approach in several case studies.
翻译:Monte Carlo估计在随机反应网络中发挥着关键作用。然而,要减少相应的测算员的统计不确定性,就需要对大量的轨迹进行抽样。我们建议根据这一过程的统计时段进行控制变异,以减少测算员的差异。我们开发一种算法,从无限多的控制变异中选择一个高效的子集。为此,算法使用重新抽样和了解冗余的贪婪选择。我们在若干案例研究中展示了我们的方法效率。