Monte Carlo estimation in plays a crucial role in stochastic reaction networks. However, reducing the statistical uncertainty of the corresponding estimators requires sampling a large number of trajectories. We propose control variates based on the statistical moments of the process to reduce the estimators' variances. We develop an algorithm that selects an efficient subset of infinitely many control variates. To this end, the algorithm uses resampling and a redundancy-aware greedy selection. We demonstrate the efficiency of our approach in several case studies.


翻译:Monte Carlo估计在随机反应网络中发挥着关键作用。然而,要减少相应的测算员的统计不确定性,就需要对大量的轨迹进行抽样。我们建议根据这一过程的统计时段进行控制变异,以减少测算员的差异。我们开发一种算法,从无限多的控制变异中选择一个高效的子集。为此,算法使用重新抽样和了解冗余的贪婪选择。我们在若干案例研究中展示了我们的方法效率。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
77+阅读 · 2021年12月8日
专知会员服务
51+阅读 · 2020年12月14日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
98+阅读 · 2019年12月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员