This paper assesses when the validity of difference-in-differences and related estimators depends on functional form. We provide a novel characterization: the parallel trends assumption holds under all strictly monotonic transformations of the outcome if and only if a stronger "parallel trends"-type condition holds for the cumulative distribution function of untreated potential outcomes. This condition is satisfied if and essentially only if the population can be partitioned into a subgroup for which treatment is effectively randomly assigned and a remaining subgroup for which the distribution of untreated potential outcomes is stable over time. We show further that it is impossible to construct any estimator that is consistent (or unbiased) for the average treatment effect on the treated (ATT) without either imposing functional form restrictions or imposing assumptions that identify the full distribution of untreated potential outcomes. Our results suggest that researchers who wish to point-identify the ATT should justify one of the following: (i) why treatment is as-if randomly assigned, (ii) why the chosen functional form is correct at the exclusion of others, or (iii) a method for inferring the entire counterfactual distribution of untreated potential outcomes.
翻译:本文评估了差异和有关估计值的有效性何时取决于功能形式。我们提供了一个新的特征:在结果的所有严格单一变异中,如果而且只有在更强大的“平行趋势”类型条件维持着未经处理的潜在结果的累积分布功能时,平行趋势假设才会维持在结果的所有严格单一式变异状态下。如果而且只有当人口能够被分割成一个实际上随机分配治疗的分组以及另一个未处理潜在结果分布稳定的剩余分组时,这一条件才基本得到满足。我们进一步表明,如果不施加功能形式限制或强加能够确定未经处理的潜在结果的充分分布的假设,就不可能为被处理者的平均治疗效果建立一致(或公正)的估测器。我们的结果表明,希望点出ATT特征的研究人员应当证明下述原因之一是合理的:(一) 为何治疗是任意分配的,(二) 选择的功能形式为何在排除他人时是正确的,或(三) 推断未处理的潜在结果的反向性分布的方法。