In this paper, we present MASTISK (MAchine-learning and Synaptic-plasticity Technology Integrated Simulation frameworK). MASTISK is an open-source versatile and flexible tool developed in MATLAB for design exploration of dedicated neuromorphic hardware using nanodevices and hybrid CMOS-nanodevice circuits. MASTISK has a hierarchical organization capturing details at the level of devices, circuits (i.e. neurons or activation functions, synapses or weights) and architectures (i.e. topology, learning-rules, algorithms). In the current version, MASTISK provides user-friendly interface for design and simulation of spiking neural networks (SNN) powered by spatio-temporal learning rules such as Spike-Timing Dependent Plasticity (STDP). Users may provide network definition as a simple input parameter file and the framework is capable of performing automated learning/inference simulations. Validation case-studies of the proposed open source simulator will be published in the proceedings of IJCNN 2018. The proposed framework offers new functionalities, compared to similar simulation tools in literature, such as: (i) arbitrary synaptic circuit modeling capability with both identical and non-identical stimuli, (ii) arbitrary spike modeling, and (iii) nanodevice based neuron emulation. The code of MASTISK is available on request at: https://gitlab.com/NVM IITD Research/MASTISK/wikis/home
翻译:在本文中,我们介绍MASTISK(数学学习和合成塑料技术综合模拟框架K)。MASTISK是MAATLAB开发的开放源码多功能和灵活工具,用于设计使用纳米装置和混合 CMOS-纳米电路的专用神经变异硬件。MASTISK拥有一个分级组织,在设备、电路(即神经或激活功能、突触或重量)和结构(即,表层学、学习规则、算法)等层面收集细节。在目前版本中,MASTISK提供方便用户的界面,用于设计和模拟神经神经网络(SNNNN)的设计和模拟。MASTISK(SNNNNNN)的动力是Spit-时尚学习规则,如Spik-Timing Dependersy(STDP)等。用户可以提供网络定义,作为简单的输入参数文件,框架可以进行自动学习/感知/感官模拟。拟议开源模拟的测试案例将新的开源模拟数据模拟技术模拟在IMS-MMAS-Slimacial 中公布。在模拟SilSilalSmaryalSuplialSuplialSupalSuplialSupalSupal 中,在ISupalSupalSupalSupalSupalSupalSuplipal 。提议了S 。