We study interpolation inequalities between H\"older Integral Probability Metrics (IPMs) in the case where the measures have densities on closed submanifolds. Precisely, it is shown that if two probability measures $\mu$ and $\mu^\star$ have $\beta$-smooth densities with respect to the volume measure of some submanifolds $\mathcal{M}$ and $\mathcal{M}^\star$ respectively, then the H\"older IPMs $d_{\mathcal{H}^\gamma_1}$ of smoothness $\gamma\geq 1$ and $d_{\mathcal{H}^\eta_1}$ of smoothness $\eta>\gamma$, satisfy $d_{ \mathcal{H}_1^{\gamma}}(\mu,\mu^\star)\lesssim d_{ \mathcal{H}_1^{\eta}}(\mu,\mu^\star)^\frac{\beta+\gamma}{\beta+\eta}$, up to logarithmic factors. We provide an application of this result to high-dimensional inference. These functional inequalities turn out to be a key tool for density estimation on unknown submanifold. In particular, it allows to build the first estimator attaining optimal rates of estimation for all the distances $d_{\mathcal{H}_1^\gamma}$, $\gamma \in [1,\infty)$ simultaneously.
翻译:暂无翻译