Lensless cameras provide a framework to build thin imaging systems by replacing the lens in a conventional camera with an amplitude or phase mask near the sensor. Existing methods for lensless imaging can recover the depth and intensity of the scene, but they require solving computationally-expensive inverse problems. Furthermore, existing methods struggle to recover dense scenes with large depth variations. In this paper, we propose a lensless imaging system that captures a small number of measurements using different patterns on a programmable mask. In this context, we make three contributions. First, we present a fast recovery algorithm to recover textures on a fixed number of depth planes in the scene. Second, we consider the mask design problem, for programmable lensless cameras, and provide a design template for optimizing the mask patterns with the goal of improving depth estimation. Third, we use a refinement network as a post-processing step to identify and remove artifacts in the reconstruction. These modifications are evaluated extensively with experimental results on a lensless camera prototype to showcase the performance benefits of the optimized masks and recovery algorithms over the state of the art.
翻译:无镜头摄像头提供了一个框架,通过在传感器附近用振幅或相位遮罩替换常规相机中的镜头,来建立薄度成像系统。无镜头成像系统的现有方法可以恢复现场的深度和强度,但需要解决计算上昂贵的反面问题。此外,现有方法在用大深度变异来恢复稠密的场景方面困难重重。在本文中,我们建议建立一个无镜头成像系统,利用可编程遮罩的不同模式,捕捉少量的成像系统。在这方面,我们做出了三项贡献。首先,我们提出了一个快速恢复算法,以在现场固定数量的深层平面平面上恢复质。第二,我们考虑掩罩的设计问题,即可编程的无镜头的设计问题,并为优化遮罩模式提供一个设计模板,目的是改进深度估计。第三,我们用一个精细的网络作为后处理步骤,在重建过程中识别和清除文物。我们用无镜头原型的实验结果对这些修改进行了广泛的评价,以展示最佳遮罩和回收算法对艺术状态的性能的好处。