It is becoming increasingly common for researchers to consider incorporating external information from large studies to improve the accuracy of statistical inference instead of relying on a modestly sized dataset collected internally. With some new predictors only available internally, we aim to build improved regression models based on individual-level data from an "internal" study while incorporating summary-level information from "external" models. We propose a meta-analysis framework along with two weighted estimators as the composite of empirical Bayes estimators, which combines the estimates from the different external models. The proposed framework is flexible and robust in the ways that (i) it is capable of incorporating external models that use a slightly different set of covariates; (ii) it can identify the most relevant external information and diminish the influence of information that is less compatible with the internal data; and (iii) it nicely balances the bias-variance trade-off while preserving the most efficiency gain. The proposed estimators are more efficient than the naive analysis of the internal data and other naive combinations of external estimators.


翻译:研究人员越来越普遍地考虑将大型研究的外部信息纳入其中,以提高统计推断的准确性,而不是依靠内部收集的小规模数据集。由于有些新的预测器只能内部提供,我们的目标是根据“内部”研究中的个人数据建立更好的回归模型,同时将“外部”模型的汇总信息纳入其中。我们提出了一个元分析框架以及两个加权估计器,作为经验性贝耶斯估计器的组合,将不同外部模型的估计数综合在一起。拟议的框架灵活而有力,其方式是:(一) 能够纳入使用一套略有不同的共变数的外部模型;(二) 能够确定最相关的外部信息,减少与内部数据不相容的信息的影响;(三) 平衡偏差交易,同时保留效率最高的收益。拟议的估计器比对内部数据和其他外部估计器的天真组合进行天真分析更为有效。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2020年12月17日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员