Researchers are usually interested in examining the impact of covariates when separating heterogeneous samples into latent classes that are more homogeneous. The majority of theoretical and empirical studies with such aims have focused on identifying covariates as predictors of class membership in the structural equation modeling framework. In other words, the covariates only indirectly affect the sample heterogeneity. However, the covariates' influence on between-individual differences can also be direct. This article presents a mixture model that investigates covariates to explain within-cluster and between-cluster heterogeneity simultaneously, known as a mixture-of-experts (MoE) model. This study aims to extend the MoE framework to investigate heterogeneity in nonlinear trajectories: to identify latent classes, covariates as predictors to clusters, and covariates that explain within-cluster differences in change patterns over time. Our simulation studies demonstrate that the proposed model generally estimates the parameters unbiasedly, precisely and exhibits appropriate empirical coverage for a nominal 95% confidence interval. This study also proposes implementing structural equation model forests to shrink the covariate space of the proposed mixture model. We illustrate how to select covariates and construct the proposed model with longitudinal mathematics achievement data. Additionally, we demonstrate that the proposed mixture model can be further extended in the structural equation modeling framework by allowing the covariates that have direct effects to be time-varying.


翻译:通常,研究人员在将不同样本分解成更均匀的潜在类别时,有兴趣研究共变体的影响。大多数具有此类目的的理论和经验研究侧重于确定共变体作为结构等式建模框架中阶级成员的预测器。换言之,共变体只是间接地影响样本的异质性。然而,共变体对个体差异的影响也可能是直接的。本文章展示了一个混合模型,同时调查共变体以解释组内和群组间异异质性,称为专家混合(MOE)模型。这项研究旨在扩大教育部框架,以调查非线性等式模型中的异质性:确定潜在类别,共变体作为集群的预测器,以及解释一段时间内集体内部差异的共变异性。我们的模拟研究表明,拟议模型一般地估计参数时不偏袒、准确和展示适当的实验范围,以名义上95%的互异性间隔为基础。这项研究还提议实施结构等式模型森林,以缩小拟议中的混合模型空间,缩小非线性模型中的异质性。我们提议采用长期的模型模型模型模型,我们如何选择模型,以模型来进一步展示长期的数学模型。我们所拟议的模型。我们如何选择共同的数学模型,以进一步展示这种模型。我们所建的模型。我们所建的变式的模型。我们所建的模型,可以选择的数学模型,以展示的数学模型,以进一步的数学模型来展示的模型,我们所建的模型。

0
下载
关闭预览

相关内容

结构方程模型(Structural Equation Modeling,SEM)是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员