This paper aims to provide practitioners of causal mediation analysis with a better understanding of estimation options. We take as inputs two familiar strategies (weighting and model-based prediction) and a simple way of combining them (weighted models), and show how we can generate a range of estimators with different modeling requirements and robustness properties. The primary goal is to help build intuitive appreciation for robust estimation that is conducive to sound practice. A second goal is to provide a "menu" of estimators that practitioners can choose from for the estimation of marginal natural (in)direct effects. The estimators generated from this exercise include some that coincide or are similar to existing estimators and others that have not previously appeared in the literature. We note several different ways to estimate the weights for cross-world weighting based on three expressions of the weighting function, including one that is novel; and show how to check the resulting covariate and mediator balance. We use a random continuous weights bootstrap to obtain confidence intervals, and also derive general asymptotic (sandwich) variance formulas for the estimators. The estimators are illustrated using data from an adolescent alcohol use prevention study.
翻译:本文旨在为因果调解分析的从业者提供更好的估计选择。我们把两种熟悉的战略(加权和基于模型的预测)和一种简单的合并方法(加权模型)作为投入,并展示我们如何能够产生一系列不同模型要求和稳健性属性的估测器。主要目的是帮助建立对有利于正确做法的稳健估计的直觉理解。第二个目标是提供一种“菜单”,由从从业者为估计边缘自然(间接)效应而选择的估测器“菜单”。从这一作业中得出的估计器包括一些与现有估计器和以前没有出现在文献中的估算器或相似的估测器。我们注意到根据加权函数的三个表达式,包括一个新颖的表达式来估计跨世界加权的加权数;并展示如何检查由此产生的千变和调节器平衡。我们使用随机连续的重量测重器来获得信任间隔,并且还从对测量器中得出一些与现有估计器相同或类似的估计器和以前没有出现在文献中的其他估计器。我们注意到一些不同的方法,用来估计器用一些不同的方法来估计跨世界加权加权的加权的加权数。通过青少年的酒精预防研究来绘制数据。