The formal relationship between two differing approaches to the description of spacetime as an intrinsically discrete mathematical structure, namely causal set theory and the Wolfram model, is studied, and it is demonstrated that the hypergraph rewriting approach of the Wolfram model can effectively be interpreted as providing an underlying algorithmic dynamics for causal set evolution. We show how causal invariance of the hypergraph rewriting system can be used to infer conformal invariance of the induced causal partial order, in a manner that is provably compatible with the measure-theoretic arguments of Bombelli, Henson and Sorkin. We then illustrate how many of the local dimension estimation algorithms developed in the context of the Wolfram model may be reformulated as generalizations of the midpoint scaling estimator on causal sets, and are compatible with the generalized Myrheim-Meyer estimators, as well as exploring how the presence of the underlying hypergraph structure yields a significantly more robust technique for estimating spacelike distances when compared against several standard distance and predistance estimator functions in causal set theory. We finally demonstrate how the Benincasa-Dowker action on causal sets can be recovered as a special case of the discrete Einstein-Hilbert action over Wolfram model systems (with ergodicity assumptions in the hypergraph replaced by Poisson distribution assumptions in the causal set), and also how both classical and quantum sequential growth dynamics can be recovered as special cases of Wolfram model multiway evolution with an appropriate choice of discrete measure.


翻译:研究将空间时间描述为一个内在离散的数学结构,即因果确定理论和沃尔夫拉姆模型这两种不同方法之间的正式关系,并证明沃尔夫拉姆模型的高空重写方法可以有效地解释为为因果设定进化提供了基本的算法动态。我们展示了高空重写系统如何利用因果变化来推断诱因果部分顺序的不一致性,其方式与Bombelli、Henson和Sorkin的计量-理论性选择理论相对应。我们随后展示了在沃尔夫拉姆模型背景下开发的许多本地层面估计算法可以重新拟订为因果设定的中点缩缩略缩缩缩略图缩略图,与通用的Myrheim-Meyer 估测系统兼容,以及探索基础高因果部分结构的存在如何产生一种比一些标准距离和直径选前精确度估算空间距离的技术。我们最后展示了在因果设定理论中,如何将贝宁-Dowker的模型和直径直径直径动态估计算法模型和直径直径序列序列序列序列假设作为因果测测算法的特殊案例,从而恢复了红度序列测算。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Computation of Optimal Transport with Finite Volumes
Approximation of wave packets on the real line
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月6日
Bernstein-Type Bounds for Beta Distribution
Arxiv
0+阅读 · 2021年1月6日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员