Novel smart environments, such as smart home, smart city, and intelligent transportation, are driving increasing interest in deploying deep neural networks (DNN) at edge devices. Unfortunately, deploying DNN on resource-constrained edge devices poses a huge challenge. If a simulator can interact with deep learning frameworks, it can facilitate researches on deep learning at edge. The existing simulation frameworks, such as Matlab, NS-3, etc., haven't been extended to support simulations of edge learning. To support large-scale training simulations on edge nodes, we propose a discrete-event-based edge learning simulator. It includes a deep learning module and a network simulation module. Specifically, it enable simulations as an environment for deep learning. Our framework is generic and can be used in various deep learning problems before the deep learning model is deployed. In this paper, we give the design and implementation details of the discrete-event-based learning simulator and present an illustrative use case of the proposed simulator.


翻译:智能家庭、智能城市和智能交通等智能智能环境正在促使人们越来越有兴趣在边缘装置上部署深神经网络。 不幸的是,在资源限制的边缘装置上部署 DNN 是一个巨大的挑战。 如果模拟器能够与深学习框架互动,它可以促进边缘深学习的研究。 现有的模拟框架,如Matlab、NS-3等,还没有扩大到支持边缘学习模拟。 为了支持边缘节点上的大规模培训模拟,我们建议使用一个基于远视活动的边缘学习模拟器。 它包括一个深学习模块和一个网络模拟模块。 具体地说,它使得模拟成为深学习的环境。 我们的框架是通用的,可以在深学习模型部署之前用于各种深学习问题。 在本文中,我们给出了以离散活动为基础的学习模拟器的设计和实施细节,并展示了拟议模拟器的示例。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
45+阅读 · 2019年12月20日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员