Predicting pedestrian movement is critical for human behavior analysis and also for safe and efficient human-agent interactions. However, despite significant advancements, it is still challenging for existing approaches to capture the uncertainty and multimodality of human navigation decision making. In this paper, we propose SocialVAE, a novel approach for human trajectory prediction. The core of SocialVAE is a timewise variational autoencoder architecture that exploits stochastic recurrent neural networks to perform prediction, combined with a social attention mechanism and a backward posterior approximation to allow for better extraction of pedestrian navigation strategies. We show that SocialVAE improves current state-of-the-art performance on several pedestrian trajectory prediction benchmarks, including the ETH/UCY benchmark, Stanford Drone Dataset, and SportVU NBA movement dataset. Code is available at: https://github.com/xupei0610/SocialVAE.
翻译:预测行人流动对于人类行为分析以及安全和高效的人体剂互动至关重要,然而,尽管取得了重大进步,但对于现有办法而言,捕捉人类导航决策的不确定性和多式性仍具有挑战性,我们在本文件中提出“社会VAE”,这是人类轨迹预测的一种新颖办法,社会VAE的核心是一个具有时序的可变自动coder结构,它利用随机的经常性神经网络进行预测,同时辅之以社会关注机制和落后的后向近似,以便更好地提取行人导航战略。我们显示,社会VAE改进了行人轨迹预测基准,包括ETH/UCY基准、斯坦福德龙数据集和SportVU NBA运动数据集等几项行人轨迹预测基准的当前最新业绩,代码可在以下网址查阅:https://github.com/xupei0610ScialVAE。