Despite the potential of differentially private data visualization to harmonize data analysis and privacy, research in this area remains relatively underdeveloped. Boxplots are a widely popular visualization used for summarizing a dataset and for comparison of multiple datasets. Consequentially, we introduce a differentially private boxplot. We evaluate its effectiveness for displaying location, scale, skewness and tails of a given empirical distribution. In our theoretical exposition, we show that the location and scale of the boxplot are estimated with optimal sample complexity, and the skewness and tails are estimated consistently. In simulations, we show that this boxplot performs similarly to a non-private boxplot, and it outperforms a boxplot naively constructed from existing differentially private quantile algorithms. Additionally, we conduct a real data analysis of Airbnb listings, which shows that comparable analysis can be achieved through differentially private boxplot visualization.
翻译:暂无翻译