Prostate cancer is one of the most common causes of cancer deaths in men. There is a growing demand for noninvasively and accurately diagnostic methods that facilitate the current standard prostate cancer risk assessment in clinical practice. Still, developing computer-aided classification tools in prostate cancer diagnostics from multiparametric magnetic resonance images continues to be a challenge. In this work, we propose a novel deep learning approach for automatic classification of prostate lesions in the corresponding magnetic resonance images by constructing a two-stage multimodal multi-stream convolutional neural network (CNN)-based architecture framework. Without implementing sophisticated image preprocessing steps or third-party software, our framework achieved the classification performance with the area under a Receiver Operating Characteristic (ROC) curve value of 0.87. The result outperformed most of the submitted methods and shared the highest value reported by the PROSTATEx Challenge organizer. Our proposed CNN-based framework reflects the potential of assisting medical image interpretation in prostate cancer and reducing unnecessary biopsies.
翻译:前列腺癌是导致男子癌症死亡的最常见原因之一;对非侵入性准确诊断方法的需求日益增长,这种诊断方法有助于在临床实践中进行当前标准的前列腺癌症风险评估;不过,从多参数磁共振图像中开发前列腺癌症诊断的计算机辅助分类工具仍然是一个挑战;在这项工作中,我们提出一种新的深层次学习方法,通过建立一个双阶段多式多式多流神经网络(CNN)建筑框架,在相应的磁共振图像中自动分类前列腺损伤;在不采用先进的图像预处理步骤或第三方软件的情况下,我们的框架在接受者操作特征曲线值为0.87的区域内实现了分类性能,结果超过大部分提交的方法,并分享了PROSTATEx挑战组织者报告的最高价值;我们提议的CNN框架反映了协助对前列腺癌症进行医学图像判读和减少不必要的生物概率的潜力。