Digital pathology has revolutionized cancer diagnosis by leveraging Content-Based Medical Image Retrieval (CBMIR) for analyzing histopathological Whole Slide Images (WSIs). CBMIR enables searching for similar content, enhancing diagnostic reliability and accuracy. In 2020, breast and prostate cancer constituted 11.7% and 14.1% of cases, respectively, as reported by the Global Cancer Observatory (GCO). The proposed Unsupervised CBMIR (UCBMIR) replicates the traditional cancer diagnosis workflow, offering a dependable method to support pathologists in WSI-based diagnostic conclusions. This approach alleviates pathologists' workload, potentially enhancing diagnostic efficiency. To address the challenge of the lack of labeled histopathological images in CBMIR, a customized unsupervised Convolutional Auto Encoder (CAE) was developed, extracting 200 features per image for the search engine component. UCBMIR was evaluated using widely-used numerical techniques in CBMIR, alongside visual evaluation and comparison with a classifier. The validation involved three distinct datasets, with an external evaluation demonstrating its effectiveness. UCBMIR outperformed previous studies, achieving a top 5 recall of 99% and 80% on BreaKHis and SICAPv2, respectively, using the first evaluation technique. Precision rates of 91% and 70% were achieved for BreaKHis and SICAPv2, respectively, using the second evaluation technique. Furthermore, UCBMIR demonstrated the capability to identify various patterns in patches, achieving an 81% accuracy in the top 5 when tested on an external image from Arvaniti.


翻译:暂无翻译

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员