We introduce a new algorithm for solving unconstrained discrete-time optimal control problems. Our method follows a direct multiple shooting approach, and consists of applying the SQP method together with an $\ell_2$ augmented Lagrangian primal-dual merit function. We use the LQR algorithm to efficiently solve the primal-dual Newton-KKT system. As our algorithm is a specialization of NPSQP, it inherits its generic properties, including global convergence, fast local convergence, and the lack of need for second order corrections or dimension expansions, improving on existing direct multiple shooting approaches such as acados, ALTRO, GNMS, FATROP, and FDDP. As our algorithm avoids sequential rollouts of the nonlinear dynamics, it can be combined with (S\"arkk\"a and Garc\'ia-Fern\'andez, 2023) to run in $O(\log(N))$ parallel time per iteration (where $N$ is the number of stages), as well as $O(1)$ parallel time per line search iteration. Therefore, this paper provides a practical, theoretically sound, and highly parallelizable (for example, with a GPU) method for solving nonlinear discrete-time optimal control problems.
翻译:暂无翻译