We present UnrealEgo, i.e., a new large-scale naturalistic dataset for egocentric 3D human pose estimation. UnrealEgo is based on an advanced concept of eyeglasses equipped with two fisheye cameras that can be used in unconstrained environments. We design their virtual prototype and attach them to 3D human models for stereo view capture. We next generate a large corpus of human motions. As a consequence, UnrealEgo is the first dataset to provide in-the-wild stereo images with the largest variety of motions among existing egocentric datasets. Furthermore, we propose a new benchmark method with a simple but effective idea of devising a 2D keypoint estimation module for stereo inputs to improve 3D human pose estimation. The extensive experiments show that our approach outperforms the previous state-of-the-art methods qualitatively and quantitatively. UnrealEgo and our source codes are available on our project web page.
翻译:我们为以自我为中心的 3D 人构成估计提供了新的大型自然数据。不真实Ego 是基于一个先进的眼镜概念,它配备了两台可以用于不受限制环境的鱼眼照相机。我们设计了它们的虚拟原型,并将其附加在3D 人模型中,用于立体摄像。我们接下来产生大量的人类动作。因此,不真实Ego 是第一个提供以现有以自我为中心数据集中最大动作的自闭立立体图像的数据集的数据集。此外,我们提出了一个新的基准方法,其简单而有效的想法是设计一个立体投入的2D 关键点估计模块,以改进3D 人姿势估计。广泛的实验表明,我们的方法在质量和数量上都超越了以前的先进方法。不真实的Ego 和我们的源代码可以在我们的项目网页上查阅。