项目名称: 富锂层状氧化物的结构调控与电化学性能研究

项目编号: No.51272108

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 高学平

作者单位: 南开大学

项目金额: 80万元

中文摘要: 富锂层状氧化物是最具潜力的高容量正极材料之一,是实现高能量密度锂离子电池的关键。本申请主要进行富锂层状氧化物的制备与体相结构调控、晶粒尺寸与介孔微米颗粒形态的优化;在此基础上,研究材料的表面修饰,并研究修饰后材料的孔隙结构、界面作用与表面状态;重点探索微结构调控与表面修饰对电极材料的电化学行为和锂离子扩散机制的影响。 本申请拟探明富锂层状氧化物的体相结构调控机制与晶粒尺寸和介孔微米颗粒形态的控制机制,探讨建立基于材料表面修饰抑制不可逆锂丢失和快速电化学"激活"锰的反应原理,以期实现富锂层状氧化物电极的高容量、高倍率和长期循环稳定性的目标。这将可为未来高容量电极材料的探索奠定坚实基础,并有利于高能量密度二次电池体系的构筑与发展,具有重要的理论意义和潜在的应用前景。

中文关键词: 锂离子电池;正极材料;富锂层状氧化物;表面修饰;掺杂

英文摘要: The Li-rich layered oxide is one of the most potential candidates as cathode materials with large capacity for Li-ion batteries, which is a key issue to achieve high energy density of Li-ion batteries. In this proposal, the preparation, structural manipulation in the bulk, grain sizes, and mesoporous morphology of micro-sized particles will be conducted for the Li-rich layered oxides. The pore structure and interface interaction and surface state of the modified materials will be investigated after modifying the surface of the Li-rich layered oxides. Importantly, the effect of the the modified materials after the microstructural manipulation on the electrochemical performance and the lithium diffusion mechanism will be explored. Therefore, new insights into the mechanism of the structural manipulation, grain size and mesoporous morphology control of micro-sized particles should be provided in this proposal. To fulfill the requirements for large capacity, high-rate capability and long cycle stability of the Li-rich layered oxides, the irreversible loss of lithium in the initial cycle should be restrained based on the surface modification. Meanwhile, the reaction principle for activating manganese in the Li-rich layered oxides by a fast electrochemical method should be realized. The knowledge proposed in this stu

英文关键词: lithium-ion batteries;cathode materials;Li-rich layered oxides;surface modification;doping

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
28+阅读 · 2021年8月27日
2021年金融级数据库容灾技术报告(附PDF全文)
专知会员服务
19+阅读 · 2021年7月11日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
小目标检测技术研究综述
专知会员服务
120+阅读 · 2020年12月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
57+阅读 · 2021年5月3日
小贴士
相关VIP内容
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
28+阅读 · 2021年8月27日
2021年金融级数据库容灾技术报告(附PDF全文)
专知会员服务
19+阅读 · 2021年7月11日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
小目标检测技术研究综述
专知会员服务
120+阅读 · 2020年12月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员