In Class-D Power Amplifiers (CDPAs), the power supply noise can intermodulate with the input signal, manifesting into power-supply induced intermodulation distortion (PS-IMD) and due to the memory effects of the system, there exist asymmetries in the PS-IMDs. In this paper, a new behavioral modeling based on the Elman Wavelet Neural Network (EWNN) is proposed to study the nonlinear distortion of the CDPAs. In EWNN model, the Morlet wavelet functions are employed as the activation function and there is a normalized operation in the hidden layer, the modification of the scale factor and translation factor in the wavelet functions are ignored to avoid the fluctuations of the error curves. When there are 30 neurons in the hidden layer, to achieve the same square sum error (SSE) $\epsilon_{min}=10^{-3}$, EWNN needs 31 iteration steps, while the basic Elman neural network (BENN) model needs 86 steps. The Volterra-Laguerre model has 605 parameters to be estimated but still can't achieve the same magnitude accuracy of EWNN. Simulation results show that the proposed approach of EWNN model has fewer parameters and higher accuracy than the Volterra-Laguerre model and its convergence rate is much faster than the BENN model.
翻译:在级D电源放大器(CDPAs)中,电力供应噪音可以与输入信号相互调和,表现为电力供应引发的相互调和扭曲(PS-IMD),由于该系统的内存效应,PS-IMD中存在不对称现象。在本文中,提议以Elman Wavelet神经网络(EWINNN)为基础的新的行为模型来研究对CDPAs的非线性扭曲。在EWNNN模型中,Morlet波盘函数作为激活功能使用,在隐藏层中有一个正常操作,对波盘函数中的比因和翻译因的修改被忽略,以避免误差曲线的波动。当隐藏层中有30个神经元时,为了实现相同的平方数值错误(SSE) $\epsilon ⁇ min ⁇ 10 ⁇ -3},EWNNNN需要31个模型步骤,而基本的Elman神经网络(BENN)模型需要86个步骤。伏特拉-Laguer模型模型比其精度的精确度要小于SimNEW的精确度,但SIM的精确度的参数要小于SUAW。