Nowadays, time-stamped web documents related to a general news query floods spread throughout the Internet, and timeline summarization targets concisely summarizing the evolution trajectory of events along the timeline. Unlike traditional document summarization, timeline summarization needs to model the time series information of the input events and summarize important events in chronological order. To tackle this challenge, in this paper, we propose a Unified Timeline Summarizer (UTS) that can generate abstractive and extractive timeline summaries in time order. Concretely, in the encoder part, we propose a graph-based event encoder that relates multiple events according to their content dependency and learns a global representation of each event. In the decoder part, to ensure the chronological order of the abstractive summary, we propose to extract the feature of event-level attention in its generation process with sequential information remained and use it to simulate the evolutionary attention of the ground truth summary. The event-level attention can also be used to assist in extracting summary, where the extracted summary also comes in time sequence. We augment the previous Chinese large-scale timeline summarization dataset and collect a new English timeline dataset. Extensive experiments conducted on these datasets and on the out-of-domain Timeline 17 dataset show that UTS achieves state-of-the-art performance in terms of both automatic and human evaluations.
翻译:目前,与整个互联网上散布的一般新闻查询洪水有关的时标网络文件遍及整个互联网,以及时标汇总目标,简明扼要地总结了事件沿时间线的演变轨迹。与传统的文件总结不同,时间总和需要建模输入事件的时间序列信息,按时间顺序总结重要事件。为了应对这一挑战,我们在本文件中提议建立一个单一时间线总结器(UTS),可按时间顺序生成抽象和抽取时间线摘要。具体地说,在编码器部分,我们提议一个基于图表的事件编码器,根据内容依赖性将多个事件联系起来,并学习每个事件的全球代表性。在分解器部分,为确保抽象摘要按时间顺序顺序顺序排列,我们提议在其生成过程中提取事件层面关注的特点,保留顺序信息,并利用它模拟对地面真相摘要的进化关注。活动关注度还可以用来帮助提取摘要,在时间序列中,根据时间顺序绘制摘要。我们增加了以前的中国大型时标汇总数据集,并收集了每个事件的全球代表性。我们提议,为确保抽象摘要按时间顺序顺序顺序顺序排列新的英国数据,在17个时间段上进行业绩测试。