Abstract: Background: Understanding cardiovascular artery disease risk factors, the leading global cause of mortality, is crucial for influencing its etiology, prevalence, and treatment. This study aims to evaluate prognostic markers for coronary artery disease in Mashhad using Naive Bayes, REP Tree, J48, CART, and CHAID algorithms. Methods: Using data from the 2009 MASHAD STUDY, prognostic factors for coronary artery disease were determined with Naive Bayes, REP Tree, J48, CART, CHAID, and Random Forest algorithms using R 3.5.3 and WEKA 3.9.4. Model efficiency was compared by sensitivity, specificity, and accuracy. Cases were patients with coronary artery disease; each had three controls (totally 940). Results: Prognostic factors for coronary artery disease in Mashhad residents varied by algorithm. CHAID identified age, myocardial infarction history, and hypertension. CART included depression score and physical activity. REP added education level and anxiety score. NB included diabetes and family history. J48 highlighted father's heart disease and weight loss. CHAID had the highest accuracy (0.80). Conclusion: Key prognostic factors for coronary artery disease in CART and CHAID models include age, myocardial infarction history, hypertension, depression score, physical activity, and BMI. NB, REP Tree, and J48 identified numerous factors. CHAID had the highest accuracy, sensitivity, and specificity. CART offers simpler interpretation, aiding physician and paramedic model selection based on specific. Keywords: RF, Na\"ive Bayes, REP, J48 algorithms, Coronary Artery Disease (CAD).
翻译:暂无翻译