Maneuvering target tracking is a challenging problem for sensor systems because of the unpredictability of the targets' motions. This paper proposes a novel data-driven method for learning the dynamical motion model of a target. Non-parametric Gaussian process regression (GPR) is used to learn a target's naturally shift invariant motion (NSIM) behavior, which is translationally invariant and does not need to be constantly updated as the target moves. The learned Gaussian processes (GPs) can be applied to track targets within different surveillance regions from the surveillance region of the training data by being incorporated into the particle filter (PF) implementation. The performance of our proposed approach is evaluated over different maneuvering scenarios by being compared with commonly used interacting multiple model (IMM)-PF methods and provides around $90\%$ performance improvement for a multi-target tracking (MTT) highly maneuvering scenario.
翻译:由于目标动作的不可预测性,对传感器系统来说,操纵目标跟踪是一个具有挑战性的问题。本文件提出一种新的数据驱动方法,用于学习目标的动态运动模型。非参数高斯进程回归(GPR)用于学习目标的自然变异运动(NSIM)行为,该行为在翻译上是变化性的,不需要随着目标动作不断更新。学习的高斯进程(GPs)可以通过纳入粒子过滤器(PF)的实施来跟踪培训数据监测区不同监测区内的目标。我们拟议方法的性能通过与通常使用的交互式多模型(IMM)-PF方法进行比较来评估不同的操作情景,并为多目标跟踪(MTT)的高度操纵情景提供大约90美元的业绩改进。