This paper studies distributed algorithms for (strongly convex) composite optimization problems over mesh networks, subject to quantized communications. Instead of focusing on a specific algorithmic design, a black-box model is proposed, casting linearly convergent distributed algorithms in the form of fixed-point iterates. The algorithmic model is equipped with a novel random or deterministic Biased Compression (BC) rule on the quantizer design, and a new Adaptive encoding Nonuniform Quantizer (ANQ) coupled with a communication-efficient encoding scheme, which implements the BC-rule using a finite number of bits (below machine precision). This fills a gap existing in most state-of-the-art quantization schemes, such as those based on the popular compression rule, which rely on communication of some scalar signals with negligible quantization error (in practice quantized at the machine precision). A unified communication complexity analysis is developed for the black-box model, determining the average number of bits required to reach a solution of the optimization problem within a target accuracy. It is shown that the proposed BC-rule preserves linear convergence of the unquantized algorithms, and a trade-off between convergence rate and communication cost under ANQ-based quantization is characterized. Numerical results validate our theoretical findings and show that distributed algorithms equipped with the proposed ANQ have more favorable communication cost than algorithms using state-of-the-art quantization rules.
翻译:这个纸质研究在网状网络上分布了(强烈的 convex) 复合优化问题的算法, 但须有量化的通信。 提议了一个黑箱模型, 而不是侧重于特定的算法设计, 而是以固定点的迭代形式绘制线性趋同分布式算法。 这个算法模型配备了一种新的随机或确定性 双向压缩(BC) 规则, 以及一个新的调适编码非单向量化(ANQ), 加上一个通信效率高的编码计划, 利用一定数量的比特( 低机器精确度) 来实施不列颠哥伦比亚规则。 这填补了大多数最先进量的四分法方案中存在的一个空白, 例如那些基于大众压缩规则的。 它依靠一些可忽略微量量化错误的卡路里信号的通信( 实际在机器精确度上进行微量化 ) 。 为黑箱模型开发了统一的通信复杂性分析, 确定在目标精确度范围内解决优化问题所需的平均比数( 低机器精度精确度精确度) 。 它显示, 拟议的不折价级运算法的运算法的运算法结果在不精确范围内保持了我们交易的折价性运价价定价结果之间, 。