Cross-domain image retrieval aims at retrieving images across different domains to excavate cross-domain classificatory or correspondence relationships. This paper studies a less-touched problem of cross-domain image retrieval, i.e., unsupervised cross-domain image retrieval, considering the following practical assumptions: (i) no correspondence relationship, and (ii) no category annotations. It is challenging to align and bridge distinct domains without cross-domain correspondence. To tackle the challenge, we present a novel Correspondence-free Domain Alignment (CoDA) method to effectively eliminate the cross-domain gap through In-domain Self-matching Supervision (ISS) and Cross-domain Classifier Alignment (CCA). To be specific, ISS is presented to encapsulate discriminative information into the latent common space by elaborating a novel self-matching supervision mechanism. To alleviate the cross-domain discrepancy, CCA is proposed to align distinct domain-specific classifiers. Thanks to the ISS and CCA, our method could encode the discrimination into the domain-invariant embedding space for unsupervised cross-domain image retrieval. To verify the effectiveness of the proposed method, extensive experiments are conducted on four benchmark datasets compared with six state-of-the-art methods.
翻译:跨域图像检索旨在挖掘跨域分类或对应关系。本文研究了一个少有人涉及的交叉领域图像检索问题,即在没有对应关系和类别注释的情况下进行无监督交叉领域图像检索。没有交叉领域对应关系的情况下,对齐和跨域是具有挑战性的。为了解决这个挑战,我们提出了一种新颖的无对应关系域对齐(CoDA)方法,通过域内自匹配监督(ISS)和跨域分类器对齐(CCA)有效地消除跨域差异。具体而言,ISS 通过设计一种新颖的自匹配监督机制来将判别信息封装到潜在的共同空间中。为了缓解交叉域差异,CCA 提出了对齐不同域特定分类器的方法。由于 ISS 和 CCA,我们的方法能够将判别编码到无监督跨域图像检索的域不变嵌入空间中。为验证所提出方法有效性,我们在四个基准数据集上进行了广泛的实验,并与六种最先进的方法进行了比较。