A tensor network is a type of decomposition used to express and approximate large arrays of data. A given data-set, quantum state or higher dimensional multi-linear map is factored and approximated by a composition of smaller multi-linear maps. This is reminiscent to how a Boolean function might be decomposed into a gate array: this represents a special case of tensor decomposition, in which the tensor entries are replaced by 0, 1 and the factorisation becomes exact. The collection of associated techniques are called, tensor network methods: the subject developed independently in several distinct fields of study, which have more recently become interrelated through the language of tensor networks. The tantamount questions in the field relate to expressability of tensor networks and the reduction of computational overheads. A merger of tensor networks with machine learning is natural. On the one hand, machine learning can aid in determining a factorization of a tensor network approximating a data set. On the other hand, a given tensor network structure can be viewed as a machine learning model. Herein the tensor network parameters are adjusted to learn or classify a data-set. In this survey we recover the basics of tensor networks and explain the ongoing effort to develop the theory of tensor networks in machine learning.
翻译:强力网络是一种用来表达和估计大量数据阵列的分解类型。 给定的数据集、 量子状态或更高维度的多线性地图被一个小多线性地图的构成所考虑和近似。 这是对布尔函数如何被分解成门形阵列的记忆: 这代表了高压分解的一个特殊案例, 在这种分解中, 以 0 、 1 取代了气分解条目, 并精确地进行了分解。 相关技术的收集被称为, 强力网络方法: 在几个不同的研究领域独立开发的课题, 最近通过高压网络语言变得相互关联。 在实地的等同问题涉及到发声网络的可表达性和计算管理器管理率的减少。 高压网络与机器学习的合并是自然的。 一方面, 机器学习可以帮助确定 Exmor 网络的因子化系数, 与数据集相匹配。 另一方面, 给定的 高压网络结构可以被看作一个机器学习模型。 这里, 以 Exor 网络参数 正在 学习的系统 学习 恢复 。