Persistent homology has become an important tool for extracting geometric and topological features from data, whose multi-scale features are summarized in a persistence diagram. From a statistical perspective, however, persistence diagrams are very sensitive to perturbations in the input space. In this work, we develop a framework for constructing robust persistence diagrams from superlevel filtrations of robust density estimators constructed using reproducing kernels. Using an analogue of the influence function on the space of persistence diagrams, we establish the proposed framework to be less sensitive to outliers. The robust persistence diagrams are shown to be consistent estimators in bottleneck distance, with the convergence rate controlled by the smoothness of the kernel. This, in turn, allows us to construct uniform confidence bands in the space of persistence diagrams. Finally, we demonstrate the superiority of the proposed approach on benchmark datasets.
翻译:持久性同质学已成为从数据中提取几何特征和地形特征的重要工具,这些数据的多尺度特征在持久性图表中作了总结。然而,从统计角度看,持久性图表对输入空间的扰动非常敏感。在这项工作中,我们开发了一个框架,从利用再生内核构造的稳健密度估计器的超层过滤器中构建稳健的持久性图表。我们利用对持久性图表空间影响功能的模拟,建立了拟议的框架,对外部线不那么敏感。强健的持久性图表显示在瓶颈距离上是一致的估算器,与内核平滑所控制的汇合率一致。这反过来又使我们能够在持久性图表空间中构建统一的信任带。最后,我们展示了在基准数据集上拟议方法的优越性。