Establishing a correspondence between two non-rigidly deforming shapes is one of the most fundamental problems in visual computing. Existing methods often show weak resilience when presented with challenges innate to real-world data such as noise, outliers, self-occlusion etc. On the other hand, auto-decoders have demonstrated strong expressive power in learning geometrically meaningful latent embeddings. However, their use in \emph{shape analysis} has been limited. In this paper, we introduce an approach based on an auto-decoder framework, that learns a continuous shape-wise deformation field over a fixed template. By supervising the deformation field for points on-surface and regularising for points off-surface through a novel \emph{Signed Distance Regularisation} (SDR), we learn an alignment between the template and shape \emph{volumes}. Trained on clean water-tight meshes, \emph{without} any data-augmentation, we demonstrate compelling performance on compromised data and real-world scans.
翻译:在视觉计算中,在两种非硬性变形形状之间建立对应关系是最根本的问题之一。当现有方法在向噪音、外部离子、自我封闭等真实世界数据提出挑战时,往往表现出薄弱的抗御力。 另一方面,自动解析器在学习几何意义上有意义的潜伏嵌入中表现出强烈的表达力。然而,它们在 emph{shape 分析中的使用是有限的。 在本文中,我们引入了一个基于自动解析器框架的方法,该方法在固定模板上学习一个连续的形状错位场。通过对地表上的点进行变形,并通过新颖的\emph{签署的远程正规化}(SRDR)对地表外点进行常规化,我们学到了模板和形状 emph{ puts} 之间的校正。 我们训练了清洁的防水草、\emph{没有数据放大,我们展示了受损数据和真实世界扫描的令人信服的性能。