Simultaneous Localization and Mapping (SLAM) algorithms are frequently deployed to support a wide range of robotics applications, such as autonomous navigation in unknown environments, and scene mapping in virtual reality. Many of these applications require autonomous agents to perform SLAM in highly dynamic scenes. To this end, this tutorial extends a recently introduced, unifying optimization-based SLAM backend framework to environments with moving objects and features. Using this framework, we consider a rapprochement of recent advances in dynamic SLAM. Moreover, we present dynamic EKF SLAM: a novel, filtering-based dynamic SLAM algorithm generated from our framework, and prove that it is mathematically equivalent to a direct extension of the classical EKF SLAM algorithm to the dynamic environment setting. Empirical results with simulated data indicate that dynamic EKF SLAM can achieve high localization and mobile object pose estimation accuracy, as well as high map precision, with high efficiency.
翻译:同时的本地化和绘图算法(SLAM)经常用于支持广泛的机器人应用,例如在未知环境中的自主导航和虚拟现实中的现场绘图等。许多这些应用都要求自主代理商在高度动态的场景中执行SLAM。为此,这一指导性将最近推出的、以优化为基础的SLAM后端框架扩展至带有移动物体和特征的环境。利用这一框架,我们考虑使动态的SLAM最近的进展更加接近。此外,我们提出了动态的EKF SLAM:一种新颖的、以过滤为基础的动态SLAM算法,并证明它在数学上等同于将传统的EKF SLAM算法直接延伸至动态环境环境。模拟数据的经验性结果表明,动态的EKFSLAM可以实现高度本地化和移动物体的准确度,并具有较高的地图精确度,并具有很高的效率。