Automatic sign language processing is gaining popularity in Natural Language Processing (NLP) research (Yin et al., 2021). In machine translation (MT) in particular, sign language translation based on glosses is a prominent approach. In this paper, we review recent works on neural gloss translation. We find that limitations of glosses in general and limitations of specific datasets are not discussed in a transparent manner and that there is no common standard for evaluation. To address these issues, we put forward concrete recommendations for future research on gloss translation. Our suggestions advocate awareness of the inherent limitations of gloss-based approaches, realistic datasets, stronger baselines and convincing evaluation.
翻译:在自然语言处理(NLP)研究中,自动手语处理越来越受欢迎(Yin等人,2021年)。特别是在机器翻译(MT)中,基于光滑的手语翻译是一个突出的方法。在本文件中,我们审查了最近关于神经损失翻译的工作。我们发现,一般的光滑和特定数据集的局限性没有以透明的方式加以讨论,没有共同的评价标准。为了解决这些问题,我们为今后关于光滑翻译的研究提出了具体建议。我们的建议主张认识到基于光滑的方法、现实的数据集、更强大的基线和令人信服的评价的内在局限性。