We propose and investigate a probabilistic model of sublinear-time one-dimensional cellular automata. In particular, we modify the model of ACA (which are cellular automata that accept if and only if all cells simultaneously accept) so that every cell changes its state not only dependent on the states it sees in its neighborhood but also on an unbiased coin toss of its own. The resulting model is dubbed probabilistic ACA (PACA). We consider one- and two-sided error versions of the model (in the same spirit as the classes $\mathsf{RP}$ and $\mathsf{BPP}$) and establish a separation between the classes of languages they can recognize all the way up to $o(\sqrt{n})$ time. We also prove that the derandomization of $T(n)$-time PACA (to polynomial-time deterministic cellular automata) for various regimes of $T(n) = \omega(\log n)$ implies non-trivial derandomization results for the class $\mathsf{RP}$ (e.g., $\mathsf{P} = \mathsf{RP}$). The main contribution is an almost full characterization of the constant-time PACA classes: For one-sided error, the class is equal to that of the deterministic model; that is, constant-time one-sided error PACA can be fully derandomized with only a constant multiplicative overhead in time complexity. As for two-sided error, we prove that the respective class is "sandwiched" in-between the class of strictly locally testable languages ($\mathsf{SLT}$) and that of locally threshold testable languages ($\mathsf{LTT}$).
翻译:我们提出并调查一个亚线性单维细胞自动自动模型的概率模型。 特别是, 我们修改 ACA 模式( 即手机自动数据, 在所有单元格同时接受的情况下才能接受), 这样每个单元格改变状态不仅取决于其周围所看到的状态, 也取决于其周围所看到的国家, 而不是它自己的不偏向硬币。 由此产生的模型被命名为“ 多线性概率” ACA( PACA ) 。 我们考虑该模型的一面和两面错误版本( 与 美元/ mathsf{ RP} 和 $\ maths foomata 相同), 并且修改 AACACA的模型模式模式模式( 手机自动自动接受) 和 美元自动自动自动自动自动接受模式。 对于类来说, “ 美元( sal- mal- demany) 标准语言的解缩缩缩缩缩缩缩缩缩成 。 在 PACA 类中, 美元( mal- mass) ad= a cal decal decal ad adal adal_ pal_ pal_ pal_ pal_ pal_ a pass) pral_ pal_ pal_ pal_ pral_ pral_ pral_ pralalal_ a pal_ a pal_ a palalals a palsal_ pral_ pral_ pralsalsal_ pral_ a pal_ a palsalsalsalsalalalalalal_ a paldaldaldalalal_ addal_ a_ addaldal_ a pal_ a pal_ a palalalalalalalalalalalalalalalalalalals adalalalalalalalalalalalalalaldaldaldalalalalalalalaldalalalalalalalalalalals adalalalal_ adalalalal_ padaldaldal_ paldaldaldaldaldaldal_ MA_ MA_ MA_ MA