We propose and investigate a probabilistic model of sublinear-time one-dimensional cellular automata. In particular, we modify the model of ACA (which are cellular automata that accept if and only if all cells simultaneously accept) so that every cell changes its state not only dependent on the states it sees in its neighborhood but also on an unbiased coin toss of its own. The resulting model is dubbed probabilistic ACA (PACA). We consider one- and two-sided error versions of the model (in the same spirit as the classes $\mathsf{RP}$ and $\mathsf{BPP}$) and establish a separation between the classes of languages they can recognize all the way up to $o(\sqrt{n})$ time. We also prove that the derandomization of $T(n)$-time PACA (to polynomial-time deterministic cellular automata) for various regimes of $T(n) = \omega(\log n)$ implies non-trivial derandomization results for the class $\mathsf{RP}$ (e.g., $\mathsf{P} = \mathsf{RP}$). The main contribution is an almost full characterization of the constant-time PACA classes: For one-sided error, the class is equal to that of the deterministic model; that is, constant-time one-sided error PACA can be fully derandomized with only a constant multiplicative overhead in time complexity. As for two-sided error, we prove that the respective class is "sandwiched" in-between the class of strictly locally testable languages ($\mathsf{SLT}$) and that of locally threshold testable languages ($\mathsf{LTT}$).


翻译:我们提出并调查一个亚线性单维细胞自动自动模型的概率模型。 特别是, 我们修改 ACA 模式( 即手机自动数据, 在所有单元格同时接受的情况下才能接受), 这样每个单元格改变状态不仅取决于其周围所看到的状态, 也取决于其周围所看到的国家, 而不是它自己的不偏向硬币。 由此产生的模型被命名为“ 多线性概率” ACA( PACA ) 。 我们考虑该模型的一面和两面错误版本( 与 美元/ mathsf{ RP} 和 $\ maths foomata 相同), 并且修改 AACACA的模型模式模式模式( 手机自动自动接受) 和 美元自动自动自动自动自动接受模式。 对于类来说, “ 美元( sal- mal- demany) 标准语言的解缩缩缩缩缩缩缩缩缩成 。 在 PACA 类中, 美元( mal- mass) ad= a cal decal decal ad adal adal_ pal_ pal_ pal_ pal_ pal_ a pass) pral_ pal_ pal_ pal_ pral_ pral_ pral_ pralalal_ a pal_ a pal_ a palalals a palsal_ pral_ pral_ pralsalsal_ pral_ a pal_ a palsalsalsalsalalalalalal_ a paldaldaldalalal_ addal_ a_ addaldal_ a pal_ a pal_ a palalalalalalalalalalalalalalalalalalals adalalalalalalalalalalalalalaldaldaldalalalalalalalaldalalalalalalalalalalals adalalalal_ adalalalal_ padaldaldal_ paldaldaldaldaldaldal_ MA_ MA_ MA_ MA

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月17日
Arxiv
0+阅读 · 2022年8月14日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员