Probabilistic amplitude shaping (PAS) is on track to become the de facto coded modulation standard for communication systems aiming to operate close to channel capacity at high transmission rates. The essential component of PAS that breeds this widespread interest is the amplitude shaping block, through which the channel input distribution is controlled. This block is responsible for converting bit strings into amplitude sequences with certain properties, e.g., fixed composition, limited energy, limited energy variation, etc. Recently, band-trellis enumerative sphere shaping (B-ESS) was introduced as an amplitude shaping technique that achieves limited energy variations which is useful in optical communication scenarios. B-ESS operates based on a trellis diagram in which sequences with high energy variations are pruned. In this work, we study the implementation of B-ESS. We first show that thanks to the trellis structure obtained by this pruning, B-ESS can be implemented with very low storage complexity. The trellis computation is shown to be reduced to a set of recursive multiplications with a scalar factor. Then we show that this scalar factor can be adjusted such that the trellis computation is further simplified and realized with only binary shifts. This shift-based B-ESS (1) can be implemented for arbitrarily long blocklengths without incurring an increase in complexity, and (2) can operate in a streaming mode similar to convolutional coding.
翻译:概率成形( PAS) 正在逐步成为通信系统事实上的编码调控标准( PAS), 目的是以高传输速率在接近传输能力的地方运行。 PAS 的基本组成部分是振幅成形块, 通过这个块来控制频道输入分布。 这个块负责将比特字符转换成具有某些特性的振幅序列, 例如固定构成、 有限的能源、 有限的能源变异等。 最近, 带- 色谱成形( B-ESS) 被引入了一种振幅成形技术, 实现有限的能源变异, 这在光学通信情景中有用。 B-ESS 的基本组成部分是以Tellilis 图表为基础的, 该图的序列是高能量变异的分布。 在这项工作中,我们研究了 B-ESS 的落实情况。 我们首先显示,由于通过这个运行的三角结构, B-ESS 可以用非常低的存储复杂性来实施。 Tellis 计算显示, trellis 将降低为一系列循环变数, 在光学的情景下, 然后我们显示, 将进行这种变变变变 。