In this paper, we design and analyze a Hybrid High-Order discretization method for the steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities. The proposed method has several appealing features including the support of general meshes and high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for scalar Leray-Lions problems. A complete well-posedness and convergence analysis of the method is carried out under new, general assumptions on the strain rate-shear stress law, which encompass several common examples such as the power-law and Carreau-Yasuda models. Numerical examples complete the exposition.
翻译:在本文中,我们设计并分析一种混合式高分解法,用于非纽顿语、小速度的斯托克斯近似中无法压缩的液体的稳定运动,拟议方法具有若干吸引人的特征,包括一般草和高压的支持、无条件的硬质稳定性,以及与卡路里 Leray-Lions 问题相匹配的趋同顺序。在对压力感应应力法的新的一般假设下,对这种方法进行了完全精良和趋同性分析,其中包括一些共同的例子,如权力法和卡雷奥-亚苏达模型。