We reformulate the signal temporal logic (STL) synthesis problem as a maximum a-posteriori (MAP) inference problem. To this end, we introduce the notion of random STL~(RSTL), which extends deterministic STL with random predicates. This new probabilistic extension naturally leads to a synthesis-as-inference approach. The proposed method allows for differentiable, gradient-based synthesis while extending the class of possible uncertain semantics. We demonstrate that the proposed framework scales well with GPU-acceleration, and present realistic applications of uncertain semantics in robotics that involve target tracking and the use of occupancy grids.
翻译:我们将信号时间逻辑合成(STL)合成问题重新表述为最大隐性(MAP)推论问题。 为此,我们引入随机STL~(RSTL)的概念, 将确定性STL与随机上游相扩展。 这种新的概率扩展自然导致合成推论法。 提议的方法允许不同、 梯度合成,同时扩展可能不确定的语义类别。 我们证明,拟议框架与GPU加速性(GPU- 加速性)相匹配,并在机器人中现实应用不确定的语义,涉及目标跟踪和使用占用网格。