Variational Monte Carlo (VMC) is an approach for computing ground-state wavefunctions that has recently become more powerful due to the introduction of neural network-based wavefunction parametrizations. However, efficiently training neural wavefunctions to converge to an energy minimum remains a difficult problem. In this work, we analyze optimization and sampling methods used in VMC and introduce alterations to improve their performance. First, based on theoretical convergence analysis in a noiseless setting, we motivate a new optimizer that we call the Rayleigh-Gauss-Newton method, which can improve upon gradient descent and natural gradient descent to achieve superlinear convergence with little added computational cost. Second, in order to realize this favorable comparison in the presence of stochastic noise, we analyze the effect of sampling error on VMC parameter updates and experimentally demonstrate that it can be reduced by the parallel tempering method. In particular, we demonstrate that RGN can be made robust to energy spikes that occur when new regions of configuration space become available to the sampler over the course of optimization. Finally, putting theory into practice, we apply our enhanced optimization and sampling methods to the transverse-field Ising and XXZ models on large lattices, yielding ground-state energy estimates with remarkably high accuracy after just 200-500 parameter updates.
翻译:Monte Carlo (VMC) 是计算地面状态波子的一种方法,由于引入以神经网络为基础的波子偏差,这一方法最近变得更加强大。然而,高效地训练神经波子以达到最低能源水平仍然是一个难题。在这项工作中,我们分析VMC所使用的优化和取样方法,并采用修改方法来改进其性能。首先,根据无噪音环境下的理论趋同分析,我们鼓励一种新的优化,即我们称之为Rayleigh-Gaus-Newton方法,它可以改进梯度下降和自然梯度下降,以达到超线趋同,而很少增加计算成本。第二,为了在出现随机噪音的情况下实现这种有利的比较,我们分析了取样错误对VMC参数更新的影响,并实验性地表明,通过平行的调和方法,可以减少这种误差。特别是,我们证明RGN能够对在取样者获得新的配置空间区域后出现的能源涨幅变得强大。最后,我们把理论化为实践,我们用高精确度的200度优化和采样方法,在高水平的地平纬度后,我们用高度地平纬度模型对地平纬度进行。