Diffuse optical tomography (DOT) is an imaging modality which uses near-infrared light. Although iterative numerical schemes are commonly used for its inverse problem, correct solutions are not obtained unless good initial guesses are chosen. We propose a numerical scheme of DOT which works even when good initial guesses of optical parameters are not available. We use simulated annealing (SA) which is a method of the Markov-chain Monte Carlo. To implement SA for DOT, a spin Hamiltonian is introduced in the cost function, and the Metropolis algorithm or single-component Metropolis-Hastings algorithm is used. By numerical experiments, it is shown that an initial random spin configuration is brought to a converged configuration by SA and targets in the medium are reconstructed. The proposed numerical method solves the inverse problem for DOT by finding the ground state of a spin Hamiltonian with SA.
翻译:Diffuse光学断层摄影(DOT)是一种使用近红外光的成像模式。虽然迭代数字方法通常用于反向问题,但除非选择良好的初步猜测,否则无法找到正确的解决办法。 我们提议DOT的数值方法,即使没有光学参数的良好初步猜测,这个方法也行得通。 我们使用了作为Markov-链蒙特卡洛的一种方法的模拟Annealing(SA)方法。为了实施 SA, DOT, 在成本函数中引入了一个旋转的 Hamiltonian, 并且使用了大都会算法或单一成份的Meopolis-Hasting算法。 通过数字实验, 显示初始随机旋转配置由 SA 带来趋同的配置, 介质中的目标得到重建。 拟议的数字方法通过找到一个旋转的Hamiltonian 与 SA 的地面状态来解决 DOT的反向问题。