This paper presents a {\delta}-PI algorithm which is based on damped Newton method for the H{\infty} tracking control problem of unknown continuous-time nonlinear system. A discounted performance function and an augmented system are used to get the tracking Hamilton-Jacobi-Isaac (HJI) equation. Tracking HJI equation is a nonlinear partial differential equation, traditional reinforcement learning methods for solving the tracking HJI equation are mostly based on the Newton method, which usually only satisfies local convergence and needs a good initial guess. Based upon the damped Newton iteration operator equation, a generalized tracking Bellman equation is derived firstly. The {\delta}-PI algorithm can seek the optimal solution of the tracking HJI equation by iteratively solving the generalized tracking Bellman equation. On-policy learning and off-policy learning {\delta}-PI reinforcement learning methods are provided, respectively. Off-policy version {\delta}-PI algorithm is a model-free algorithm which can be performed without making use of a priori knowledge of the system dynamics. NN-based implementation scheme for the off-policy {\delta}-PI algorithms is shown. The suitability of the model-free {\delta}-PI algorithm is illustrated with a nonlinear system simulation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员