A tournament is said to have the $S_k$-property if, for any set of $k$ players, there is another player who beats them all. Minimum tournaments having this property have been explored very well in the 1960's and the early 1970's. In this paper, we define a strengthening of the $S_k$-property that we name "strong $S_k$-property". We show, first, that several basic results on the weaker notion remain valid for the stronger notion (and the corresponding modification of the proofs requires only little extra-effort). Second, it is demonstrated that the stronger notion has applications in the area of Teaching. Specifically, we present an infinite family of concept classes all of which can be taught with a single example in the No-Clash model of teaching while, in order to teach a class $\cC$ of this family in the recursive model of teaching, order of $\log|\cC|$ many examples are required. This is the first paper that presents a concrete and easily constructible family of concept classes which separates the No-Clash from the recursive model of teaching by more than a constant factor. The separation by a logarithmic factor is remarkable because the recursive teaching dimension is known to be bounded by $\log |\cC|$ for any concept class $\cC$.


翻译:据说,如果对任何一组美元球员来说,有另一组美元球员胜过球员,那么比赛就拥有$S_k$-property。在1960年代和1970年代初期,对拥有这种财产的最低限度锦标赛进行了非常深入的探讨。在本文中,我们定义了我们命名为“强力S_k$k$-property”的$S_k$-property的加强。我们首先显示,弱点概念的一些基本结果对于强点概念依然有效(对证据的相应修改只需要略微额外努力)。第二,事实证明,较强的概念在教学领域具有应用性。具体地说,我们展示了一个无限的概念类别,所有的概念类别都可以在“不砍刀”教学模式中以一个单一的例子来教授。而为了在反复教学模式中教授这个家庭的一个等级的$\c$C$,需要许多例子。这是第一份文件,展示一个具体和容易构建的概念类组,而这个概念类类系在教学领域都有应用。我们展示的是“不折法”的分级概念,因为通过不断的分级的分级的分级的分级的分级法,因为通过不断的分级的分级比分级的分级的分级的分级的分级的分级法比分级的分级的分级的分级的分级的分级的分级的分级比分级的分级的分级的分级法是一个分级的分级的分级法的分级法的分级法的分级法是令人的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级法,所以的分级的分级的分级的分级的分级的分级,因此的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级的分级比分级是分级的分级,因此的分级的分级的分级的分级的分级的分级法的分级法的分级是分级的分级的分级的分级的分级的分级的分级的分级的分级的分

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月5日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员