We consider the domain decomposition method approach to solve the Helmholtz equation. Double sweep based approaches for overlapping decompositions are presented. In particular, we introduce an overlapping splitting double sweep (OSDS) method valid for any type of interface boundary conditions. Despite the fact that first order interface boundary conditions are used, the OSDS method demonstrates good stability properties with respect to the number of subdomains and the frequency even for heterogeneous media. In this context, convergence is improved when compared to the double sweep methods in Nataf et al. (1997) and Vion et al. (2014, 2016} for all of our test cases: waveguide, open cavity and wedge problems.
翻译:我们考虑了解决Helmholtz等式的域分解方法,提出了重叠分解的双向拆解方法,特别是,我们采用了对任何类型的界面边界条件都适用的重叠分拆双向拆解方法,尽管使用了第一顺序的界面边界条件,但OSDS方法在子域数和甚至多种媒体的频率方面显示出了良好的稳定性。在这方面,与Nataf等人(1997年)和Vion等人(2014年、2016年)的双向拆解方法相比,我们所有试验案例(波导、开腔和wedge问题)的趋同性得到了改进。