In this paper, we construct a bijective mapping between a biquadratic spline space over the hierarchical T-mesh and the piecewise constant space over the corresponding crossing-vertex-relationship graph (CVR graph). We propose a novel structure, by which we offer an effective and easy operative method for constructing the basis functions of the biquadratic spline space. The mapping we construct is an isomorphism. The basis functions of the biquadratic spline space hold the properties such as linearly independent, completeness and the property of partition of unity, which are the same with the properties for the basis functions of piecewise constant space over the CVR graph. To demonstrate that the new basis functions are efficient, we apply the basis functions to fit some open surfaces.
翻译:在本文中,我们在T-mesh等级上的双赤道样板空间和相对应的交叉垂直关系图(CVR 图)的片断常数空间之间建立一个双向绘图。我们提出了一个新结构,通过这个结构,我们提供了一种有效和容易的操作方法,用以构建双赤道样板空间的基础功能。我们所构造的映射是一个无形态的。双赤道样板空间的基础功能维持着诸如线性独立、完整性和统一分割属性等属性,这些属性与CVR图上的片断常数空间的基础功能的属性相同。为了证明新的基函数是有效的,我们应用基函数来适应一些开放的表面。