We introduce a tamed exponential time integrator which exploits linear terms in both the drift and diffusion for Stochastic Differential Equations (SDEs) with a one sided globally Lipschitz drift term. Strong convergence of the proposed scheme is proved, exploiting the boundedness of the geometric Brownian motion (GBM) and we establish order 1 convergence for linear diffusion terms. In our implementation we illustrate the efficiency of the proposed scheme compared to existing fixed step methods and utilize it in an adaptive time stepping scheme. Furthermore we extend the method to nonlinear diffusion terms and show it remains competitive. The efficiency of these GBM based approaches are illustrated by considering some well-known SDE models.


翻译:我们引入了一种调制指数时间集成器,该集成器利用线性术语,用于蒸馏式差异平方的漂移和扩散,同时使用一个全球边际的利普西茨漂移术语;证明拟议办法十分趋同,利用几何布朗运动(GBM)的界限,我们为线性扩散术语确定了第1级趋同顺序;在执行中,我们展示了拟议办法与现有固定步骤方法相比的效率,并在适应性时间制中加以利用;此外,我们将该方法扩大到非线性扩散术语,并显示其仍然具有竞争力;这些基于GBM方法的效率通过考虑一些众所周知的SDE模型来说明。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
已删除
将门创投
5+阅读 · 2017年11月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
已删除
将门创投
5+阅读 · 2017年11月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Top
微信扫码咨询专知VIP会员