We introduce a tamed exponential time integrator which exploits linear terms in both the drift and diffusion for Stochastic Differential Equations (SDEs) with a one sided globally Lipschitz drift term. Strong convergence of the proposed scheme is proved, exploiting the boundedness of the geometric Brownian motion (GBM) and we establish order 1 convergence for linear diffusion terms. In our implementation we illustrate the efficiency of the proposed scheme compared to existing fixed step methods and utilize it in an adaptive time stepping scheme. Furthermore we extend the method to nonlinear diffusion terms and show it remains competitive. The efficiency of these GBM based approaches are illustrated by considering some well-known SDE models.
翻译:我们引入了一种调制指数时间集成器,该集成器利用线性术语,用于蒸馏式差异平方的漂移和扩散,同时使用一个全球边际的利普西茨漂移术语;证明拟议办法十分趋同,利用几何布朗运动(GBM)的界限,我们为线性扩散术语确定了第1级趋同顺序;在执行中,我们展示了拟议办法与现有固定步骤方法相比的效率,并在适应性时间制中加以利用;此外,我们将该方法扩大到非线性扩散术语,并显示其仍然具有竞争力;这些基于GBM方法的效率通过考虑一些众所周知的SDE模型来说明。