This study investigates dynamic system-optimal (DSO) and dynamic user equilibrium (DUE) traffic assignment of departure/arrival-time choices in a corridor network. The morning commute problems with a many-to-one pattern of origin-destination demand and the evening commute problems with a one-to-many pattern are considered. Specifically, a novel approach to derive closed-form solutions for both DSO and DUE problems is developed. We first derive a closed-form solution to the DSO problem based on the regularities of the cost and flow variables at an optimal state. By utilizing this solution, we prove that the queuing delay at a bottleneck in a DUE solution is equal to an optimal toll that eliminates the queue in a DSO solution under certain conditions of a schedule delay function. This enables us to derive a closed-form DUE solution by using the DSO solution. We also show the theoretical relationship between the DSO and DUE assignment. Numerical examples are provided to illustrate and verify the analytical results.
翻译:这项研究对走廊网络中离开/抵达时间选择的动态系统最佳(DSO)和动态用户平衡(DUE)交通选择进行了调查。 考虑了以多种至一种模式的源地-目的地需求在清晨通勤问题和以一至多种模式在晚通勤问题。 具体地说,开发了一种新颖的方法,为 DSO 和 DUE 问题找出封闭式解决方案。 我们首先根据成本和流动变量在最佳状态的规律性,为DSO 问题找到一种封闭式解决方案。 我们通过使用这一解决方案,证明在DUE 解决方案中一个瓶子的挤压延迟等于一种在一定时间延迟功能条件下消除 DSO 解决方案中排队的最佳计价。 这使我们能够通过 DSO 解决方案获得一个封闭式的 DUE 解决方案。 我们还展示了 DSO 和 DUE 任务之间的理论关系。 我们提供了数字示例,以说明和核实分析结果。