Group authentication is a method of confirmation that a set of users belong to a group and of distributing a common key among them. Unlike the standard authentication schemes where one central authority authenticates users one by one, group authentication can handle the authentication process at once for all members of the group. The recently presented group authentication algorithms mainly exploit Lagrange's polynomial interpolation along with elliptic curve groups over finite fields. As a fresh approach, this work suggests use of linear spaces for group authentication and key establishment for a group of any size. The approach with linear spaces introduces a reduced computation and communication load to establish a common shared key among the group members. The advantages of using vector spaces make the proposed method applicable to energy and resource constrained devices. In addition to providing lightweight authentication and key agreement, this proposal allows any user in a group to make a non-member to be a member, which is expected to be useful for autonomous systems in the future. The scheme is designed in a way that the sponsors of such members can easily be recognized by anyone in the group. Unlike the other group authentication schemes based on Lagrange's polynomial interpolation, the proposed scheme doesn't provide a tool for adversaries to compromise the whole group secrets by using only a few members' shares as well as it allows to recognize a non-member easily, which prevents service interruption attacks.
翻译:集团认证是确认一组用户属于一个组和在其中分配共同钥匙的一种方法。 与标准认证计划不同, 一个中央当局对用户逐个认证, 集团认证可以对集团所有成员立即处理认证程序。 最近推出的集团认证算法主要利用Lagrange的多盘跨局和对有限字段的椭圆曲线组。 作为一个新办法, 这项工作建议使用线性空间进行集团认证, 并为任何大小的集团建立关键机构。 线性空间的做法引入了减少计算和通信负荷的办法, 以便在集团成员中建立一个共同的钥匙。 使用矢量空间的好处是使拟议的方法适用于能源和资源限制装置。 除了提供轻量度认证和关键协议, 该提案允许集团中的任何用户使非成员成为成员, 预计这对将来的自主系统有用。 这一方案的设计方式是, 这种成员的赞助者很容易被集团中的任何人认出。 与基于 Lagrange 的多盘共享键的集团认证计划不同。 使用矢量空间使拟议的方法适用于能源和资源限制装置的装置。 除了提供一个稳定的系统, 将它作为整个工具的中断性, 使一个安全的系统能够提供整个组合, 将它作为整个组合的机密, 使一个稳定的系统, 使一个稳定的系统能够作为整个的机密不被接受。