We present an implicit Split-Step explicit Euler type Method (dubbed SSM) for the simulation of McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with drifts of superlinear growth in space, Lipschitz in measure and non-constant Lipschitz diffusion coefficient. The scheme is designed to leverage the structure induced by the interacting particle approximation system, including parallel implementation and the solvability of the implicit equation. The scheme attains the classical $1/2$ root mean square error (rMSE) convergence rate in stepsize and closes the gap left by [18, "Simulation of McKean-Vlasov SDEs with super-linear growth" in IMA Journal of Numerical Analysis, 01 2021. draa099] regarding efficient implicit methods and their convergence rate for this class of McKean-Vlasov SDEs. A sufficient condition for mean-square contractivity of the scheme is presented. Several numerical examples are presented, including a comparative analysis to other known algorithms for this class (Taming and Adaptive time-stepping) across parallel and non-parallel implementations.
翻译:我们展示了一种隐含的分解分流直线粒子类型方法(dubbed SSM),用于模拟McKan-Vlasov 斯托卡分化(MV-SDEs),模拟空间超线性增长的流动,Lipschitz 量度和非contant Lipschitz 扩散系数,这个办法旨在利用由交互式粒子近似系统引发的结构,包括平行实施和隐含方程式的可溶性。这个办法达到了典型的1/2美元根平均正方差(rMSE)趋同率,并缩小了[18,“Mckegan-Vlasov SDEs模拟超线性增长”,载于IMA Nummerical 分析杂志,01 2021. Draa099,其中涉及高效的暗中方法及其在麦肯-Vlasov SDEs这一类中的趋同率。提出了该办法的中平均值的充足条件。提出了几个数字例子,包括与其他已知的类算法(Tating and Sandalepting-develyss)进行比较分析。