We develop a simple Quantile Spacing (QS) method for accurate probabilistic estimation of one-dimensional entropy from equiprobable random samples, and compare it with the popular Bin-Counting (BC) method. In contrast to BC, which uses equal-width bins with varying probability mass, the QS method uses estimates of the quantiles that divide the support of the data generating probability density function (pdf) into equal-probability-mass intervals. Whereas BC requires optimal tuning of a bin-width hyper-parameter whose value varies with sample size and shape of the pdf, QS requires specification of the number of quantiles to be used. Results indicate, for the class of distributions tested, that the optimal number of quantile-spacings is a fixed fraction of the sample size (empirically determined to be ~0.25-0.35), and that this value is relatively insensitive to distributional form or sample size, providing a clear advantage over BC since hyperparameter tuning is not required. Bootstrapping is used to approximate the sampling variability distribution of the resulting entropy estimate, and is shown to accurately reflect the true uncertainty. For the four distributional forms studied (Gaussian, Log-Normal, Exponential and Bimodal Gaussian Mixture), expected estimation bias is less than 1% and uncertainty is relatively low even for very small sample sizes. We speculate that estimating quantile locations, rather than bin-probabilities, results in more efficient use of the information in the data to approximate the underlying shape of an unknown data generating pdf.


翻译:我们开发了一个简单的 Qantile Spaceing (QS) 方法, 用于从设备可变随机样本中精确地对一维样本进行精确的概率估计, 并将其与流行的 Bin-Counting (BC) 方法进行比较。 与使用等宽 bin- bin- bin- bin- bin- speating (BC) 方法相比, QS 方法使用一个简单的 Quintile Space (QS) 方法, 将数据生成概率密度函数(pdf) 的辅助值分为相等的 概率密度值( pdf), 以同等的概率- 质量间隔来进行精确的 。 虽然 Bin- with 超级参数的值值值与 pdf 的样本大小和形状不同, QS 需要指定要使用的量的量大小。 与 Bin- Qounticle 方法相比, 与 Binal- breal 的数值相比, QServal- dreal road lavelopmental- dal laveal laves lave lax lax lax lax lax lax lax lax lady lady lady lady laved laveds laut the laut lauts lady lady lady lautds lautdal romodal romodal ladal romodal ladal ladal ladal laddal lads ladal ladddal ladddddddds ladddaldal lauts lautdal ladal roddddddddddddal roddddddal rodddal rodal rodal roddddddddddal rod rod rodal rodal rodal rodal rodal, rodaldal ro rodal, rod

0
下载
关闭预览

相关内容

【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
专知会员服务
92+阅读 · 2021年1月24日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月12日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
专知会员服务
92+阅读 · 2021年1月24日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员