We develop a simple Quantile Spacing (QS) method for accurate probabilistic estimation of one-dimensional entropy from equiprobable random samples, and compare it with the popular Bin-Counting (BC) method. In contrast to BC, which uses equal-width bins with varying probability mass, the QS method uses estimates of the quantiles that divide the support of the data generating probability density function (pdf) into equal-probability-mass intervals. Whereas BC requires optimal tuning of a bin-width hyper-parameter whose value varies with sample size and shape of the pdf, QS requires specification of the number of quantiles to be used. Results indicate, for the class of distributions tested, that the optimal number of quantile-spacings is a fixed fraction of the sample size (empirically determined to be ~0.25-0.35), and that this value is relatively insensitive to distributional form or sample size, providing a clear advantage over BC since hyperparameter tuning is not required. Bootstrapping is used to approximate the sampling variability distribution of the resulting entropy estimate, and is shown to accurately reflect the true uncertainty. For the four distributional forms studied (Gaussian, Log-Normal, Exponential and Bimodal Gaussian Mixture), expected estimation bias is less than 1% and uncertainty is relatively low even for very small sample sizes. We speculate that estimating quantile locations, rather than bin-probabilities, results in more efficient use of the information in the data to approximate the underlying shape of an unknown data generating pdf.
翻译:我们开发了一个简单的 Qantile Spaceing (QS) 方法, 用于从设备可变随机样本中精确地对一维样本进行精确的概率估计, 并将其与流行的 Bin-Counting (BC) 方法进行比较。 与使用等宽 bin- bin- bin- bin- bin- speating (BC) 方法相比, QS 方法使用一个简单的 Quintile Space (QS) 方法, 将数据生成概率密度函数(pdf) 的辅助值分为相等的 概率密度值( pdf), 以同等的概率- 质量间隔来进行精确的 。 虽然 Bin- with 超级参数的值值值与 pdf 的样本大小和形状不同, QS 需要指定要使用的量的量大小。 与 Bin- Qounticle 方法相比, 与 Binal- breal 的数值相比, QServal- dreal road lavelopmental- dal laveal laves lave lax lax lax lax lax lax lax lax lady lady lady lady laved laveds laut the laut lauts lady lady lady lautds lautdal romodal romodal ladal romodal ladal ladal ladal laddal lads ladal ladddal ladddddddds ladddaldal lauts lautdal ladal roddddddddddddal roddddddal rodddal rodal rodal roddddddddddal rod rod rodal rodal rodal rodal rodal, rodaldal ro rodal, rod