This paper investigates decoder diversity architectures for short low-density parity-check (LDPC) codes, based on recurrent neural network (RNN) models of the belief-propagation (BP) algorithm. We propose a new approach to achieve decoder diversity in the waterfall region, by specializing BP-RNN decoders to specific classes of errors, with absorbing set support. We further combine our approach with an ordered statistics decoding (OSD) post-processing step, which effectively leverages the bit-error rate optimization deriving from the use of the binary cross-entropy loss function. We show that a single specialized BP-RNN decoder combines better than BP with the OSD post-processing step. Moreover, combining OSD post-processing with the diversity brought by the use of multiple BP-RNN decoders, provides an efficient way to bridge the gap to maximum likelihood decoding.
翻译:本文根据信仰- 传播算法的经常性神经网络模型(RNN),对低密度对等检查(LDPC)短时间代码的解码多样性结构进行了调查。我们提出了在瀑布区域实现解码多样性的新办法,即将BP-RNN解码器专门解码到具体的错误类别,并辅之以吸收成套支持。我们进一步将我们的方法与有命令的统计解码(OSD)后处理步骤结合起来,有效地利用从使用二元跨热带损耗函数中得出的比特-error 率优化。我们表明,一个单一的专门的BP-RNNN解码器比OSD后处理步骤与OSD后处理与多个BP-RNND解码器带来的多样性相结合,为弥合差距以达到最大可能解码提供了有效的途径。