项目名称: 针对蛋白质纤维材料的纳米粒子催化、抗紫外效应及其调控

项目编号: No.51302197

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 孙璐

作者单位: 武汉纺织大学

项目金额: 25万元

中文摘要: 无机半导体抗紫外纳米材料因其显著的紫外吸收能力和稳定的光学性质越来越广泛的应用于户外纺织用品、建筑涂层及防晒护肤品中,然而其较强的光催化活性对低光稳定性材料特别是蛋白质纤维的影响是不可忽视的。同时无机材料与蛋白质纤维之间没有可以连接的化学基团,使得纳米材料难以固着在纤维表面以保证其防护作用的耐久性。为此,如何实现消除无机紫外吸收材料的光催化活性并使其可以与蛋白质纤维表面键合连接,是目前极具挑战性和重要性的一项前沿课题。本申请将以二氧化钛纳米粒子为研究对象,拟采用经典的St?ber方法和静电层状自组装技术将二氧化钛纳米粒子包覆形成实心或空心的核壳结构,揭示外层结构对紫外吸收能力的影响,分析光催化活性与紫外吸收能力之间的关系,确定出适合于蛋白质纤维的二氧化钛的结构和表面性质,预期达到降低并或消除二氧化钛纳米粒子光催化活性的目的,从而为二氧化钛做为抗紫外材料以增强蛋白质纤维材料的光稳定性提供依据

中文关键词: 二氧化钛;光催化活性;紫外吸收;蛋白质纤维;废水处理

英文摘要: Inorganic semi-conductive UV absorbers have been exploited extensively in outdoor textile, coating materials for building blocks and sunscreen cosmetic areas due to their excellent UV absorption and stable optical properties. However, many concerns have arisen on the strong phtocatalytic property of inorganic UV absorbers on the materials, in particular, protein fibers, whose integrity can be jeopardized easily by strong photocatalytic property. And the durability of the fibers coated with various functional inorganic materials is not satisfactory since no/weak chemical bond exists in between. Therefore, the proposed project will set up an efficient solution to this critical challenge via applying modified titanium dioxide nanoparticles to achieve protein fibers owing stable optical property. Briefly, this work will adopt St?ber method and electrostatic layer by layer technique to prepare solid or hollow core-shell structure of hybrid materials based on titanium dioxide and silica dioxide. The present proposal will investigate the influence of the outer layer properties of the hybrid materials on the UV absorption property, examine the relationship between the photocatalytic property and UV absorption property and then select the hybrid materials with suitable structure to protein fibers. In the due course of th

英文关键词: TiO2;photocatalytic activity;UV absorbant;protein fibre;waste water treatment

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
28+阅读 · 2021年8月27日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年3月23日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
小贴士
相关主题
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
28+阅读 · 2021年8月27日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年3月23日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员